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Abstract 

 

Protein metabolism is one of the most costly processes in the cell and is therefore expected to 

be under the effective control of natural selection. We stimulated yeast strains to overexpress 

each single gene product to approximately one percent of the total protein content. Consistent 

with previous reports, we found that excessive expression of proteins containing disordered or 

membrane-protruding regions resulted in an especially high fitness cost. We estimated these 

costs to be nearly twice as high as for other proteins. There was a tenfold difference in cost if, 

instead of entire proteins, only the disordered or membrane-embedded regions were compared 

with other segments. Although the cost of processing ‘bulk’ protein was measurable, it could 

not be explained by several tested protein features, including those linked to translational 

efficiency or intensity of physical interactions after maturation. It most likely included a 

number of individually indiscernible effects arising during protein synthesis, maturation, 

maintenance, (mal)functioning, and disposal. When scaled to the levels normally achieved by 

proteins in the cell, the fitness cost of dealing with one amino acid in a standard protein 

appears to be generally very low. Many single amino acid additions or deletions are likely to 

be neutral even if the effective population size is as large as that of the budding yeast. This 

should also apply to substitutions. Selection is much more likely to operate if point mutations 

affect protein structure by, for example, extending or creating stretches that tend to unfold or 

interact improperly with membranes.  
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Introduction 

Proteins constitute a major component of the dry mass of a cell. Synthesis of amino acids and 

subsequent assembly of polypeptides are costly. The two processes are estimated to consume 

about half of the ATP molecules in a growing yeast cell and involve a large fraction of its 

nucleic acids and ribosomal proteins (Verduyn 1991; Warner 1999). The huge cost of protein 

synthesis has been recognized as such for decades (Maaloe and Kjeldgaard 1966; Waldron 

and Lacroute 1975). More recently, it has been shown that newly assembled polypeptides are 

released into a crowded environment of macromolecules in which their folding is easily 

derailed (Ellis 2001). They often end up in a form that is not only unproductive but can also 

be toxic and sometimes resistant to degradation (Stefani and Dobson 2003; Winklhofer, et al. 

2008). However, while it is certain that the costs and risks associated with the turnover of the 

total protein load are large, it remains unknown how much individual protein species differ in 

this respect. In theory, it is possible to calculate the cost of protein synthesis because the 

substrates and the process are well known. However, the required parameters are many and 

they have not yet been estimated with sufficient accuracy (Siwiak and Zielenkiewicz 2010; 

von der Haar 2008). Because the routes of folding and degradation for different polypeptides 

are still underway, the energy or fitness costs associated with such events are presently 

impossible to assess (Hartl, et al. 2011). Thus, it remains a great challenge in current research 

to provide analytical, experimental or computational estimates of selective pressures acting on 

individual proteins.  

Evidence that different proteins experience different selective forces on traits other 

than their primary functions can be extracted from the DNA sequence. In particular, it is well 

established that the rate of molecular evolution differs widely between genes and that those 

expressed the most are the ones that change the least (Pal, et al. 2001; Sharp 1991). One 
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explanation could be that the highly expressed genes mutate at a lower rate, a possibility that 

has gained some support recently (Martincorena, et al. 2012). Most researchers, however, 

believe that more highly expressed genes are under stronger purifying selection. Some of the 

tentative explanations invoke functional arguments: importance (essentiality) of function, 

multiplicity of functions, centrality to metabolic networks, number of transcription factors 

assisting expression or enrichment for genetic and/or physical interactions (Bloom and Adami 

2004; Fraser, et al. 2002; Jordan, et al. 2003; Pal, et al. 2006; Vitkup, et al. 2006; Wall, et al. 

2005; Xia, et al. 2009). For each of these factors, however, correlation with the rate of 

evolution is much lower than that for the level of gene expression (Rocha 2006; Wang and 

Zhang 2009). Thus, it appears that it is the amount of protein product that matters most. This 

could mean that selection tends to purge mutations located in highly expressed genes because 

they lead to a greater waste of resources (Barton, et al. 2010; Vieira-Silva, et al. 2011). Not 

only efficient use of materials and energy but also a high rate of translation can be important. 

This could result in selection for optimal codon usage in the highly expressed genes (Akashi 

2001; Plotkin and Kudla 2010). The more protein molecules, the higher the toxic effect after 

misfolding; therefore, misfolding-resistant sequences should especially be preserved in highly 

expressed genes, which would constrain their evolution (Drummond, et al. 2005; Drummond 

and Wilke 2008; Yang, et al. 2010). In sum, there is no lack of hypotheses for how the 

amount of synthesized protein could dictate the rate of molecular evolution. However, these 

hypotheses have been conceived through comparative analyses of DNA/protein sequences 

and have been verified mostly in the same way. In this paper, we report the results of a study 

aimed at testing these hypotheses experimentally, which has so far been addressed by only a 

few researchers.   

 The postulate of controlled alteration of selected determinants of the protein 

production cost has proved difficult to implement. For example, changing the actual codon 
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usage to a devised one alters the stability and hence the abundance of the resulting mRNA 

variants. The effect of mRNA abundance can be more important than the sought effect of 

mRNA composition (Agashe, et al. 2013; Kudla, et al. 2009). Even the seemingly 

straightforward task of demonstrating that overproduction of unnecessary proteins is 

disadvantageous has proved challenging. There must be costs associated with synthesis of 

redundant polypeptides, but there are also costs of their presence in the cell and their 

interactions with cell structures (Eames and Kortemme 2012; Plata, et al. 2010; Stoebel, et al. 

2008). Our approach is based on the assumption that universal costs of protein expression do 

exist and can be at least partly disentangled if the number and diversity of analyzed proteins 

are sufficiently large. We relied on a genomic collection of yeast strains, each overexpressing 

a single protein. Two previous studies measured approximately how much protein was 

overproduced and categorized the growth effects accompanying this overproduction 

(Gelperin, et al. 2005; Sopko, et al. 2006). One experiment measured fitness using a 

quantitative assay but the level of production was not estimated and the average production 

could not be calculated as the applied protocol of overexpression differed from those used 

earlier (Yoshikawa, et al. 2011). We therefore carried out our own assays in which we 

stimulated genes to moderate protein overproduction, measured overexpressed protein levels 

quantitatively, and estimated the growth rate with high accuracy.  

We first examined our data by asking whether the fitness effect of overexpression was 

heavily dependent on the cellular role of a tested gene. It was not, as we found by reviewing 

gene annotations. This was encouraging because we could assume that the effect of metabolic 

deregulation would not obscure the effect of carrying useless or toxic protein molecules. We 

thus asked which of the several protein properties could be the best predictor of fitness 

variation. We confirmed previous reports showing that proteins containing transmembrane 

(Kitagawa, et al. 2006; Osterberg, et al. 2006) and disordered (Ma, et al. 2010; Vavouri, et al. 
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2009) regions are especially costly to fitness when overexpressed. Crucially, we compared 

quantitatively these costs with the cost of expressing “normal” (well-structured cytosolic) 

proteins. We found that the cost of expressing well-structured cytosolic proteins is very low 

when scaled to one amino acid addition (and thus also substitution).   

 

Materials and Methods 

Strains 

We used a previously constructed collection of single yeast ORFs, each with the same 

inducible promoter PGAL1 followed by the same tandem affinity tag (His6, HA epitope, 

protease 3C site, ZZ domain, 19 kDa) cloned into a multicopy plasmid (Gelperin, et al. 2005). 

Plasmids were hosted by the haploid yeast strain Y258. Most of the cloned genes had been 

tested for errors; only approximately 3% of them were likely to have an undetected mutation 

(Gelperin, et al. 2005).  

 

Fitness assays  

The overexpression strains were inoculated directly from plates shipped by the distributor 

(Open Biosystems) into 200 μl of SC with glucose but lacking uracil to stabilize the plasmid. 

To stimulate overexpression, we used SC with raffinose as a source of carbon and galactose 

as an inducer, according to a protocol described in the original study that led to moderate 

overexpression. We then transferred 10 μl aliquots of each culture into 190 μl of fresh glucose 

medium and incubated for 48 hours. From these cultures, 10 μl aliquots were transferred to 

135 μl of SC with raffinose for another 48 hours. The raffinose cultures were diluted 10 times 

and the ODs measured. These cell suspensions were diluted again at 1:50 in SC with raffinose 

and galactose (2% each). In this growth/induction medium, the cultures were allowed to grow 

for 20 hours, at which point their ODs were determined. The ratio of the two OD 
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measurements, which were corrected for the dilution factor, served to calculate the number of 

cell doublings for each culture. All growth assays were carried out at 30 ºC.  

 

Protein assays  

Overproduction of proteins was induced by transferring cells sequentially from glucose to 

raffinose, and then to raffinose/galactose medium for 8 hours. The cells were then 

centrifuged, washed with ice-cold water and frozen. To extract proteins, the cells were beaten 

with glass beads in 100 μl of lysis buffer (50 mM Tris-HCl, pH 7.5, 0.5% SDS, 0.1 mM 

EDTA, protease inhibitors) for 4 hours at 4 ºC. Cell remnants were then spun down, and the 

supernatants were collected. Total protein content was determined using a BCA protocol. For 

a competitive ELISA assay, plates were coated overnight at 4 ºC with 0.05 μl of normal rabbit 

serum (Pierce) diluted in 100 μl of 0.2 M carbonate-bicarbonate buffer, pH 9.4. After 

washing, plates were blocked with 300 μl of 2% BSA for 24 hours. The yeast protein extracts 

were mixed with protein A conjugated to peroxidase (Pierce) then 100 μl of the resulting 

mixture was added to the blocked plate wells, for a total 10 μg of total yeast protein and 25 ng 

(~26 μU) of protein A per well. After 1 hour of incubation, the mixtures were discarded and 

the wells washed and filled with 100 μl of the TNB substrate. The reaction was terminated 

after 30 minutes with 100 μl of 2 M H2SO4, and then, the absorbance at 450 nm was 

measured. All washing steps were performed with 200 μl of PBS containing 0.05 % Tween 

20. One of the tagged proteins (Ade2p) was purified, diluted into a gradient of known 

concentrations, and used as a standard to calibrate the reads.  

 

Gene Ontology and protein properties  

To analyze the GO categories (SGD, Saccharomyces Genome Database), we applied an 

ANOVA model in which each of the 5,084 overexpressed genes was described by the Yeast 
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Slim categories taking values of zero or one (absent or present). We used the ‘lm’ function of 

the R package, followed by the ‘step’ function (based on AIC statistics) to reduce the number 

of predictor variables by eliminating the non-significant ones (R Development Core Team 

2010). The analyses were performed separately for the ‘molecular function’, ‘cellular 

component’, and ‘biological process’ classifications. As these classifications contained tens of 

terms, we did not analyze interactions between them because the latter were very numerous 

and usually contained too few data points to be meaningful.  

 Protein properties were analyzed by implementing a multiple regression model using 

the ‘lm’ function. Continuous predictor variables were log-transformed (except for gravy 

score and mRNA 5’ folding energy); a small constant was added to those with zero values 

before transformation (Wall, et al. 2005). The continuous predictor variables included: mRNA 

abundance (Garcia-Martinez, et al. 2004), protein half-life (Belle, et al. 2006), intrinsic 

disorder/protein length + 0.01(Linding, et al. 2003), protein length (SGD), CAI+0.1 (SGD), 

gravy score (SGD), and protein abundance, that is, the number of molecules per protein 

species (Ghaemmaghami, et al. 2003). To calculate the energy of structures at the 5’ end of 

mRNAs, we used the Vienna RNA Package 2.0 (Lorenz, et al. 2011) for stretches extending 

from the -4 to +37 nucleotide positions (Plotkin and Kudla 2010). All continuous predictor 

variables were standardized prior to analysis. There were also two categorical variables: 

physical interaction status (not hub, intermediate number of interactions, party hub, date hub) 

(Ekman, et al. 2006; Han, et al. 2004) and the presence of transmembrane segments (not 

predicted, predicted by only one study, predicted by two studies) (Krogh, et al. 2001; Persson 

and Argos 1994). ORFs with missing values in any of the predictor variables were excluded 

from this analysis. There were 2,913 ORFs with a complete set of predictors, and only those 

were included in the final orthogonal model. We included all 10 listed variables in the model 

and the first order interactions between them (except for interactions between the two 
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categorical variables). The entire procedure was repeated 40 times with random permutations 

of the order of categories in the model. The p-values for predictor variables were averaged 

over repeats (geometrically).  

 

Results 

Fitness effects of moderate overexpression of genes are small  

We found that an overproduced protein species constituted typically approximately 1% of the 

total protein amount (more detailed data reported below), which is much less than doses 

known to be severely toxic (Dong, et al. 1995; Geiler-Samerotte, et al. 2011). We measured 

fitness by estimating how many cell divisions occurred in single-strain liquid cultures over a 

period of about one day (see Methods). This included both lag and growth phases resulting in 

an average number of doublings of 7.75 (median 7.83) with a standard deviation of 0.45. (The 

cultures reached about one fourth of their final density.) Thus, variation in fitness was not 

high, especially given that a sizable portion of it came from differences between plates and 

was eliminated from all subsequent analyses by within-plate normalization (Methods).  

Previous studies evaluated the growth of colonies on common agar plates (Gelperin, et al. 

2005; Sopko, et al. 2006) or in individual liquid cultures over a shorter time interval 

(Makanae, et al. 2013; Yoshikawa, et al. 2011). Those earlier estimates generally agree with 

ours (Supplementary Fig. 1). We sought to assay fitness in a way that would increase the role 

of fast growth, and thus fast protein processing, in the final measure of fitness. Importantly, 

we wanted to compare quantitative fitness estimates with quantitative estimates of protein 

overproduction for a large number of individual clones, which had not been performed in 

previous studies.  

Fig. 1 shows the distribution of normalized fitness estimates for 5,182 strains 

containing a unique cloned ORF known to express a protein (SGD). The intraclass correlation 
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coefficient (ICC) calculated over four independent repeats was 0.966, indicating that 

repeatability of our fitness measurements was high. Good repeatability within a strain and 

large differences between strains (the shape of clouds) suggest that factors other than 

measurement errors were responsible for much of the fitness variation. Some factors, such as 

the average copy number of individual plasmids, could not be controlled in this experimental 

system. All individual records, both normalized and non-normalized, are listed in 

Supplementary Table 1.  

 

Functional categorization explains little of the gene overexpression effects  

As reported below in detail, the median content of overexpressed proteins was about 400 

times higher than the median content of normally expressed ones (Ghaemmaghami, et al. 

2003). This could potentially disturb at least some cellular functions. The overexpressed 

genes fell into 22 Yeast Slim GO cell component categories, 41 molecular function 

categories, and 100 biological process categories (we decided to reduce the biological process 

categories to 40 by combining some of the most similar ones). Within each of these three 

classifications, we first applied a linear model including all categories and then progressively 

simplified it by eliminating statistically non-significant categories (see Methods). We 

obtained a relatively low number of potentially important predictors shown in Fig. 2. There 

were a few categories associated with increased fitness. These suggest that speeding up 

turnover of nucleotides and adjusting oxidative metabolism could have a positive effect on 

fitness. Negative effects were more numerous and larger. They were linked to cell wall and 

membrane structures. Although these factors were significant on a statistical level, they had 

very small average effects, approximately 0.005, which is clearly less than the standard 

deviation of the overall distribution of normalized fitness estimates, 0.032 (Fig. 1b). The 

observed weak dependence of fitness effects on the functions of the overexpressed proteins 
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may be specific to our experimental system. Other arrangements, e.g., E. coli and high 

overexpression, have shown that unnaturally high levels of transcription factors and 

regulatory proteins can be toxic (Singh and Dash 2013).  

 To further test whether growth was indeed relatively insensitive to metabolic 

deregulation, we focused our analyses on enzymes alone. We revisited a study in which the 

molecular evolution of enzymes was considered dependent on their metabolic centrality and 

connectivity (Vitkup, et al. 2006). Connectivity of an enzyme had been calculated as the 

number of other metabolic enzymes that produce or consume the enzyme's products or 

reactants. In our data set, 329 of the 350 enzymes examined in the original study were 

included. We used the same categorization of metabolic connectivity but did not find it 

helpful in explaining the observed variation in the fitness response to gene overexpression 

(r = ‒0.029, p = 0.6). Apparently, the cell’s metabolic network is well buffered against 

perturbations in the expression level of participating enzymes, at least when single enzymes 

are overabundant. As reported above, most cellular structures and processes were also 

remarkably resistant to such alterations. We therefore decided that it would be acceptable to 

execute the analysis of protein properties for all genes together, ignoring their cellular roles 

and making the statistics both simpler and more powerful.  

 

Only a few protein properties correlate with the cost of overexpression   

A review of theoretical and empirical studies disclosed 10 properties of proteins/mRNAs that 

were frequently examined as factors potentially affecting the rate of evolution. The 

dependence of fitness on the most significant factors is shown in Fig. 3a. The remaining 

factors are presented in Supplementary Fig. 2. These graphs illustrate how the fitness of the 

overexpression strains correlates with  each characteristic separately. They show that although 

the effects of some factors (e.g., protein length) are small, they can be remarkably regular. In 
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a formal statistical analysis, we used a linear model, which examined jointly all single factors 

and selected interactions (see Materials and Methods). The results are reported more 

thoroughly in Supplementary Table 2. Here, in Fig. 3b, we present only summaries of 

statistics for individual factors. Some factors, such as protein half-life, codon adaptation 

index, frequency of physical interactions, abundance under normal expression, energy of 5’ 

mRNA fold, and gravy score proved non-significant. Two of the statistically significant 

factors, the presence of transmembrane regions and the proportion of protein length occupied 

by sequences predicted to be loosely shaped (intrinsically disordered), refer to properties that 

become meaningful only after a protein chain is synthesized and folded. Other properties may 

be important at the time of synthesis. There was a negative correlation between the level of 

mRNA under normal expression and fitness. This could mean that overexpression of the 

normally common transcripts tends to deplete optimal tRNAs for production of redundant 

proteins and thus slow down elongation of those needed. However, the effect of high CAI on 

fitness, although negative, was not statistically significant. The energy of the folding of 5’ 

mRNAs was also neutral, suggesting that transcripts with rigid spatial structures did not trap 

too many ribosomes (Plotkin and Kudla 2010). It thus appears that there is no shortage of 

ribosomes, and possibly optimal tRNAs, when one percent of translation is useless, at least 

under the growth conditions applied here. Finally, there was a negative correlation between 

protein length and fitness indicating that the amount of an overproduced protein mattered 

(because all overexpressed proteins had the same promoter). This relation attracted our 

attention especially because it appeared to be very regular over the entire range of protein 

lengths (Fig. 3a). We therefore decided to test experimentally whether the length of a protein 

is a good proxy for its amount under overexpression.  
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Relating fitness cost to the amount of protein 

We estimated the cellular level of overproduced protein for a large sample of strains. 

Repeatability of estimates obtained by competitive ELISA was high (ICC = 0.944, n = 719, 

p << 0.001) and centered on a median of 0.63 % (Fig. 4a). The relationship between the 

amount of overproduced protein and its length is shown in Fig. 4b; Pearson’s correlation 

coefficient was significant (r = 0.136, df = 717, p = 0.0002). To find a quantitative relation 

between the length of a protein and its amount under overexpression, we used a data set 

without the outliers seen in Fig. 4b (see Supplementary Methods for details). We found that 

when the length of a protein doubles, its amount under overexpression increases by about half 

(the slope of a linear regression with both axes log-transformed was 0.47). We could then 

assign to every protein its expected amount under overexpression as a function of its length. 

From the common model of multiple regression, we found the relationships between the 

length of a protein (and its amount), the presence of transmembrane regions, and the presence 

of disordered regions, the three factors jointly effecting fitness (Supplementary Table 3). This 

information is summarized in Table 1, which lists the cost of expressing different proteins per 

1% of total protein mass and per amino acid. To get the latter estimates, we assumed that the 

total mass of proteins in the yeast cell is 6.0×10
‒12

 g (Sherman 2002). Knowing the number of 

molecules (Ghaemmaghami, et al. 2003) and their molecular weights, we could calculate the 

total weight of every protein.  The contribution of special regions was calculated from the 

proportions of the transmembrane or disordered regions calculated for every individual 

protein species (Krogh, et al. 2001; Linding, et al. 2003; Persson and Argos 1994). One 

implicit assumption that could introduce only a minimal bias to our estimates is the 

assumption that the per amino acid weight of the transmembrane, disordered, and other 

regions was equal (See Supplementary Methods for more details regarding calculations).  
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Table 1 shows that the average effect of having a disordered region or a 

transmembrane domain is remarkable but not excessively large. On average, disordered 

regions nearly doubled the fitness cost of the entire protein. Similarly, the membrane proteins 

were substantially more costly than were the cytosolic ones. The costs expressed per amino 

acid show the relative fitness changes of expanding some regions at the expense of other 

regions. They may also serve to compare fitness costs of proteins expressed at different levels. 

The yeast proteins are represented by very different numbers of molecules per cell under 

natural expression, from ten to one million (Ghaemmaghami, et al. 2003).  

 In the analyses described above, either some of the characteristics borrowed from 

other studies or our own measurements were lacking for a number of genes. We asked which 

of our results would hold if a single analysis were performed for those genes only for which 

both the fitness estimate, as well as the protein overexpression level, and all other variables 

were known. There were only 423 such genes. Detailed results are presented in 

Supplementary Table 4. Briefly, the presence of transmembrane domains remained the most 

significant factor. Three factors pertaining to protein abundance—the measured level, the 

reported half-life, and the predicted length—were also significant or nearly significant. This 

latest finding is yet another indication that it is not only the structural properties of a 

redundant protein but also its amount that contributes to toxicity. 

    

Discussion 

We found that overexpression of single genes in S. cerevisiae generally leads to moderate but 

variable effects on growth. This variation is partly explained by the properties of the over-

expressed protein molecules and the roles they play in cellular metabolism. Cell growth also 

correlated to the amount of over-expressed protein, indicating that synthesis and processing of 

useless polypeptides lowers the efficiency of cell growth. This particular cost was relatively 
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small, which explains why it has not been convincingly demonstrated in former studies. 

Proteins with disordered or intra-membrane regions were especially damaging to fitness when 

overexpressed. Based on these findings, we propose that an addition, or exchange, of a single 

amino acid is of little consequence for fitness unless it extends or creates protein regions 

forming critical structures.  

There are two possible explanations why the disordered and transmembrane regions 

are especially damaging to fitness when overexpressed. One of them concentrates on 

overload, the other on toxicity. Considering overload, we note that the summed mass of all 

membrane proteins is 15% of the total protein content in a yeast cell. Similarly, the disordered 

stretches of polypeptides make up approximately 12% of total protein. Therefore, the same 

weight of an extra 1% of protein constitutes a considerably higher overload in terms of 

proportion added to the proteins that are in membranes or are disordered. The costs associated 

with transmembrane proteins can include membrane piercing, interfering with other 

membrane proteins, or engaging membrane-specific folding pathways. Similarly, if 

maintaining the total pool of loosely structured proteins poses some special cost to the cell, 

then every overexpressed member of this group adds a higher proportion to this cost. 

Generally, the costs of overload could result from expressing those proteins that are more 

expensive/risky to keep in the cell even if they function as expected. A type of overload 

hypothesis has been proposed in which malfunctioning of membranes occurs in response to 

the overexpression of a membrane protein (Eames and Kortemme 2012).  On the contrary, the 

cost of toxicity means that over-expressed protein chains acquire new and unwanted 

functions. It is possible that both the disordered and membrane proteins are especially likely 

to undergo such transformation. The ‘disordered’ or ‘unstructured’ regions have important 

functions in signaling, control, and regulation (Dunker, et al. 2008). Proteins with such 

regions interact with one another and with unrelated proteins, which leads to misfolding and 
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aggregation (Olzscha, et al. 2011; Uversky, et al. 2008; Vavouri, et al. 2009). Aggregates tend 

to expose hydrophobic surfaces and therefore tend to illegitimately penetrate and damage 

cellular membranes (Kourie and Henry 2002; Stefani 2008). Even the programmed formation 

of transmembrane domains can be sensitive to crowding and non-prescribed interactions with 

other regions of polypeptides (Chakrabarti, et al. 2011; Levine, et al. 2005; Mackenzie 2006; 

Skach 2009). In sum, there are good hypothetical explanations why transmembrane and 

disordered proteins are especially likely to be overloaded or driven into toxicity when 

overexpressed. However, substantial efforts would be needed to find which of the two 

possible mechanisms is actually occurring when a particular protein is over-expressed.   

There are two other properties of proteins that correlated with the cost of over-

expression: the length of the polypeptide and the abundance of the cognate mRNA under 

normal expression. As explained in the Results, we believe the two traits are simply correlated 

with the amount of useless protein and that this unnecessary burden is the real cause of fitness 

decrease. We base our assumption on the remarkable regularity of the relationship between 

polypeptide length and fitness loss, as well as on a statistically significant relation between 

polypeptide length and an actual abundance of overexpressed protein in the cell. We 

considered two alternative hypotheses. One assumes that long proteins are disproportionally 

more likely to misfold and thus over-exploit molecular chaperones. To test this, we asked 

whether the over-expression of proteins known to interact with molecular chaperones had 

more substantial effects on fitness. We do not report these tests because we did not find any 

relationship between the fitness cost and the frequency of interactions with single chaperones 

(Bogumil, et al. 2012), sets of chaperones revealed in large-scale studies (Gong, et al. 2009), 

or smaller but carefully confirmed chaperone assemblages (Hartl, et al. 2011). These results 

are in accord with a report suggesting that chaperones are efficient enough to handle a load of 

misfolded proteins that is substantially higher than 1% (Vabulas and Hartl 2005). Another 
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alternative explanation, that long proteins have more domains and thus are more damaging to 

the cellular regulatory mechanisms, has been tested and rejected (see Results). We therefore 

propose that our observed negative effect of protein length on fitness reflects the general cost 

of protein processing, which includes all expenses involved in protein synthesis, maturation, 

maintenance, and disposal.   

Our results can be used to address the question of whether natural selection is strong 

enough to prevent a single amino acid being added or exchanged for another one. The 

efficiency with which genomes and proteomes are purged of mutations depends not only on 

the strength of their effects but also on population size (Fernandez and Lynch 2011; Lynch 

and Conery 2003). Natural selection operates when 2Nes>1, where Ne stands for effective 

population size and s for the selection coefficient. It is effective when the quotient is ten times 

higher. The effective population size of a species closely related to S. cerevisiae, S. 

paradoxus, was estimated at 8.6×10
6
 (Tsai, et al. 2008). We found that the average cost of 

processing one amino acid is approximately 4×10
‒11

 (Table 1), so this would be the cost of 

adding one unnecessary amino acid to one polypeptide and need to be multiplied by the 

number of affected molecules. It follows that to be non-neutral (2Nes>1), a mutation of this 

type must hit a protein represented by more than 1,453 molecules per cell. In S. cerevisiae, 

some two thirds of proteins meet this weaker criterion but only a small minority the stronger 

one (Ghaemmaghami, et al. 2003). Thus, selection can possibly act on a single amino acid 

only if the effective population size is as large as in yeast and only if proteins are sufficiently 

abundant. The entire cost of this size would be at stake if an amino acid were to be deleted or 

inserted. Substitution would most likely still be less costly and thus more often neutral. In 

many organisms the effective population size is much smaller, even by three orders of 

magnitude (Charlesworth 2009; Gossmann, et al. 2012), making selection still less effective. 

Our empirical findings generally agree with the results of a former computational study. 
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Expediting single atoms of the main components of yeast biomass (such as carbon or 

nitrogen) has been found selectively non-neutral for just approximately 1% of proteins (those 

most abundantly expressed). Only under starvation for those rarer, such as sulfur, a wasteful 

use of one atom (or an amino acid in which it resides) can be significant for a substantial 

proportion of proteins (Bragg and Wagner 2009).      

Considering the factors that could control the evolution of protein sequence, it is 

remarkable that the fitness costs associated with amino acids residing within the disordered or 

transmembrane regions were so much higher. It appears justifiable to speculate that natural 

selection would operate most intensely on mutations creating new or extending existing 

regions of danger. Not only mutations making misfolding or misinteraction unavoidable 

would be selected against (Yang, et al. 2012) but also any changes in the DNA sequence that 

could increase the rate of transcriptional and translational errors resulting in alterations of the 

spatial structure of proteins (Drummond, et al. 2005; Drummond and Wilke 2008). Such 

changes could result in selection coefficients that were higher by several orders of magnitude 

than those arising from amino acid substitutions in standard protein regions. This is because 

any unwinding of a polypeptide can involve dozens of amino acids, each being ten times more 

costly than it was in a safe structure. There is some evidence to suggest that selection 

preventing structural aberration can be strong (Chiti and Dobson 2006; Geiler-Samerotte, et 

al. 2011), but further work is clearly needed to show that much or perhaps most of the 

variation in the rate of protein evolution can be attributed to selection, minimizing the danger 

of protein misfolding and toxicity.   
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Figure legends 

Fig. 1. The effects of single gene overexpression on growth. The number of cell divisions in 

single-strain cultures was estimated four times independently. The estimates were divided by 

the median values of relevant replications to obtain normalized values. (a) The repeatability 

of the individual normalized fitness estimates and (b) the frequency distribution of strains’ 

means. The vertical dashed line marks the slowest growing 91 strains. These were removed 

from all of the following statistical analyses to make the distribution symmetric and closer to 

normal. (This exclusion was unlikely to affect our analyses. For example, we correlated 

fitness with ten properties of proteins for all data and those lacking the 91 data points. For 

data analyzed in this way, pairs of Pearson’s coefficients were themselves very much 

correlated: Pearson’s r=0.988, Spearman’s rs=1.)  

Fig. 2. Gene Ontology categories as predictors of the overexpression cost. The graph 

shows the highest and most statistically significant deviations of the Yeast Slim category 

means from the grand mean (not fitness gains or losses when compared with a strain with no 

overexpression).  

Fig. 3. Protein properties and the fitness cost of overexpression. (a) Examples of fitness 

predictors (only the most significant predictors are shown; the remaining ones are in 

Supplementary Fig. 2). Moving averages are shown as red lines for continuous variables.  

(b) Results of multifactorial analysis. Statistical significance of positive (green) and negative 

(red) effects is shown.  

Fig. 4. The level of protein overexpression. (a) Frequency distribution of the amount of 

protein at the normal (empty bars) and overexpressed (grey bars) levels. Normal protein levels 

were taken from a previous study (Ghaemmaghami, et al. 2003) and overexpression estimates 

were obtained in this study using a competitive ELISA assay. (b) The relationship between 

protein length and protein overexpression level (see Supplementary Methods). 

 at Jagiellonian U
niversity on Septem

ber 16, 2016
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/


24 

 

Table1. Fitness cost of protein expression.  

Protein type
1 

1% of total protein
2
 

(meanSE) 

Special region fraction 

(meanSD) 

Cost per single aa
3 

(meanSE) 

Standard 0.0230.005 - (7.321.63)10
-11

 

Disordered  

(added) 

0.0170.004 0.110.08 (6.761.47)10
-10

 

Trans-membrane  

(added) 

0.0120.002 0.130.10 (4.780.82)10
-10

 

 

1
 Proteins were standard (that is, cytosolic and well structured), contained disordered regions, 

and were located in membranes. The proportion of protein length taken by the disordered or 

transmembrane regions is shown in the middle column. 

2 
The fitness cost of producing 1% of superfluous polypeptide (standard), plus the costs added 

by the presence of disordered or trans-membrane regions. 

3
 The fitness cost of expressing one amino acid in one protein molecule if the amino acid is 

located in standard or special regions.  
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